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ABSTRACT
Attacks exploiting design or implementation� aws of particular
features in popular protocols are becoming prevalent and have
led to severe security impacts on a majority of software systems.
Protocol customization as a general approach to specialize a stan-
dard protocol holds signi�cant promise in reducing such attack
surfaces in common protocols. In this work, we perform an ini-
tial investigation of applying protocol customization practices to
reduce the attack surface of standard protocols. Our characteriza-
tion study on 20 medium or high-impact common vulnerability
exposures (CVEs) published in recent years indicates that some
forms of customization have been supported in existing protocol
software, but were implemented with huge manual e�ort and in an
ad-hoc manner. More systematic and automated ways of protocol
customization are awaited to generalize common customization
practices across protocols. To work towards this goal, we identify
key research challenges for the support of systematic and su�-
ciently automated protocol customization through real-world case
study on popular protocol software, and propose an access con-
trol framework as a principled solution to unify existing protocol
customization practices. We also present a preliminary design of
a protocol customization system based on this design principle.
Preliminary evaluation results demonstrate that our proposed sys-
tem supports common customization practices for a majority of
real-world protocol vulnerabilities in a systematic way.

1 INTRODUCTION
Recent years have seen severe attacks targeting core protocols that
many large-scale production systems as well as billions of mobile
and IoT devices heavily depend on, leading to massive information
stealing, privacy leaks and notorious ransomeware [4, 36, 37, 39].
With attack surfaces rooted in the design or implementation of
protocols, patching the vulnerability becomes challenging to devel-
opers as it requires comprehensive and deep understanding of latest
protocol details. Moreover, upgrading with the patched protocol
software is hard for production systems, as many of them have
stringent requirements on high availability and cannot a�ord inter-
ruption time for protocol upgrading. Though both the industry and
research community have put in signi�cant endeavor for hardening
the security of various network and application protocols [27, 31],
protocol vulnerability threats are yet to be prevented.
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We observe that a key enabler of many such attacks lies in some
exploitable� aw in the design or implementation of a particular
feature or extension of a protocol. Due to the consideration of gen-
eral support, many popular feature-rich protocols, such as SSL/TLS,
HTTP and SSH, are implemented as a one-size-�ts-all library or
software package. In common deployment scenarios, many of the
features become extraneous and may have never been invoked
by applications, but are invokable by attackers and represent an
attack surface that could have been prevented. For example, the
infamous HeartBleed vulnerability results from an implementation
�aw with the TLS/DTLS HeartBeat extension in OpenSSL. Though
many applications do not require the heartbeat feature to run the
SSL protocol, it is implemented and enabled as a standard feature in
OpenSSL. To address such embarrassingly risky situations, e�ective
and systematic solutions are awaited to provide accurate under-
standing of feature requirements and� exible support of feature
disabling.

Protocol customization is a set of techniques to modify or trans-
form a standard protocol and generate a specialized protocol which
only supports a list of required features (analogous to feature white-
listing), among which subsetting is a technique that removes all the
features except required ones from the protocol implementation,
and dialecting is a technique that modi�es the core functional-
ity of the standard protocol with the resulting protocol partially
compatible to the standard protocol. Protocol customization holds
signi�cant promise in proactively eliminating potential vulnerabili-
ties associated with unused protocol functionality. For example, the
latest ransomware vulnerability is mitigated by subsetting the unse-
cured, 30-year-old SMBv1� le-sharing protocol on your Windows
systems and servers [32]. However, existing protocol customization
practices are conducted in an ad-hoc manner by developers and far
from systematic. Furthermore, customization supports in existing
protocol software are manually implemented and thus prone to
human errors. We� nd that many popular protocol software or li-
brary packages have provided some forms of customization, but are
usually at too coarse granularities to reach a sweet spot of security
and usability.

To address the aforementioned ine�cacies, we conduct an ini-
tial investigation of applying protocol customization to reduce the
attack surface of standard protocols. Firstly, we characterize recent
CVE reports and patches with common protocols, and identify that
protocol customization is an e�ective solution to common protocol
vulnerabilities today. Secondly, we identify key research challenges
in realizing a systematic and su�ciently automated customization
process for a wide range of protocols. Finally, we propose one
promising solution direction, feature access control, as a unifying
solution to support a variety of protocol customization practices,
and propose a preliminary system design to support it. Preliminary
case studies with real-world protocol vulnerabilities and software
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validate our identi�ed challenges and solution direction. Our ex-
ploration generates real-world insights and raises initial directions
for future work in this space.

2 CVE STUDY
In order to understand how protocol customization can e�ectively
address realistic threats such as the well-known HeartBleed vulner-
ability, we study 20 medium or high-impact CVEs published in the
last 10 years targeting both system-level network protocols (e.g.,
HTTP, SSL/TLS) and application-layer protocols (e.g., OpenSSH,
XMPP). We� nd that all vulnerabilities stem from the implementa-
tion or design� aw of some protocol feature or extension, most of
which are not commonly used but enabled by default. Moreover,
a majority of them can be mitigated with some forms of feature
customization support from the protocol implementation, such as
compile-time or runtime module disabling or parameter tuning. We
categorize the types of protocol customization approach for each
CVE in Table 1, where adding protocol extension can be consid-
ered as a form of dialecting, while parameter tuning and adding
bounded conditions are forms of subsetting. This characterization
study guides us to believe that protocol customization is promising
to serve as a general solution to reduce attack surface and mitigate
vulnerabilities for a broad range of protocols.

Customization approach CVEs
Compile-time disabling Heartbleed [14], RC4 [16],

FREAK [15]
Runtime disabling HTTP_PROXY redirection [23],

Apache integer over�ow [9], XMPP
dialback [20], XMPP message

carbons [25], OpenSSH
information leak [19], HTTP proxy
data leak [6], Apache XSS [10],

FREAK [15], Logjam [17], RC4 [16],
CRIME [11], BREACH [13]

Runtime parameter tuning Slow read DoS [22], Apache integer
over�ow [9], Range header DoS [8]

Patching with bounded conditions Dependency cycle DoS [18],
HPACK bomb [21, 24], HTTP

proxy DoS [5]
Adding protocol extension TLS renegotiation [7], Lucky13 [12]

Table 1: Categorization of protocol customization approach
(some CVEs with multiple forms of customization)

3 RESEARCH CHALLENGES
As informed by our CVE study, some protocol software packages
have already supported certain forms of protocol customization
leveraging compile time options or run-time con�gurations. How-
ever, currently these customization practices are provided by man-
ual and developer-speci�c code base instrumentation, and thus
are limited in multiple aspects. First of all, such approach is di�-
cult to comprehensively cover all important customization options.
For example, the HPACK bomb vulnerability [21, 24] can be� xed
by limiting the size of header, but the developer failed to cover
such customization option at the time when the vulnerability is
discovered. Second, since the required code base instrumentation

is largely manual, the current customization technique is error-
prone. Third, due to the extra e�orts involved, it is di�cult for
developers to provide su�ciently� ne-grained customization op-
tions for maintaining protocol usability. For instance, it is relatively
easy for developers to support the customization options that dis-
able the entire mod_proxy module, but for applications relying on
this module for their core functionality, customization options at
such coarse granularity are not useful at all. Customization at�ner
granularity, e.g., submodules inside those module, are more use-
ful, but can be practically impossible due to the largely increased
manual e�orts. De�ning the right granularity to support feature
customization itself is a challenging problem. These problems call
for a more general, systematic, and su�ciently automated approach
for identifying and enforcing customization options in the protocol
customization process.

3.1 Customization Options Identi�cation
To support protocol customization in a target protocol, the neces-
sary� rst step is to identify the set of customization options that are
of interest for attack surface reduction. These options are provided
to the system administrators to help more e�ciently make cus-
tomization decisions. Each customization option needs to specify
two parts of information: (1) which protocol feature to customize,
and (2) what customization method to use. Due to the diversity in
protocol types and design and implementation choices, requiring
administrators to manually identify these options can hardly be
applied in practice. Thus, the research question is how to provide
a more systematic and automated approach to identify potential
customization options for a given protocol.

E�ectively addressing this problem involves the following re-
search challenges.

(1) Systematically understand the attack surface: Before
identifying customization options for a given protocol to
mitigate security risks, it is necessary to have a systematic
understanding of its attack surface. For example, to select
features for customization, we need to de�ne which fea-
tures are likely to expose vulnerabilities when deployed.
This is essentially a prediction task based on the knowledge
of potentially vulnerable protocol design and implementa-
tion choices, which typically requires years of experience
in manual protocol security analysis, and thus makes it a
challenging task to develop a systematic and automated ap-
proach.

(2) Identify features that are semanticallymeaningful and
self-contained: The customization options provided to the
administrators need to be semantically meaningful, e.g., at
a reasonably high level with well connection to the human-
readable protocol descriptions, so that they are easy to un-
derstand and control. Meanwhile, since these customization
options will be executed in the actual implementations of the
protocol, the features to be customized need to be also rela-
tively self-contained at the implementation level so that they
can be conveniently mapped to the code-level entities, e.g.,
functions and modules, to perform customization. This re-
quires a systematic approach to connect high-level protocol
features to low-level implementation details.
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3.2 Customization Options Enforcement
With some customization options identi�ed, the next step is to exe-
cute the customization requests. Thus, the research question is how
to design a systematic approach to support protocol customization
for a given protocol and its identi�ed customization option. As
discussed at the beginning of this section, such approach needs to
be su�ciently automated to increase e�ciency and prevent human
errors. To solve this problem, we need to address the following
research challenges.

(1) Systematically locate protocol feature code for customiza-
tion: For the vulnerabilities collected in our CVE study in §2,
the customization suggestions are identi�ed manually lever-
aging developers’ understanding of the code base structure
related to the protocol features. To automate this process,
a novel approach is required to e�ciently analyze the code
base and e�ectively localize code-level implementation of
each feature to be customized (a.k.a, feature code).

(2) E�ectively support protocol customization withmini-
mized manual e�orts: After locating the feature code, cus-
tomization support needs to be correctly added and also be
controlled by the user, e.g., via compile-time options or run-
time con�gurations. Existing customization support heavily
depends on the developer’s initial design of code base struc-
tures. For example, to provide compile-time customization
in Apache HTTP server, the source code of each module is
located in a directory under “modules”, and after applying
configure, each con�gured module has a separate Make-
�le auto-generated inside its subdirectory to be included
in the compilation [1]. However, since we aim to automate
the process with minimized manual e�orts from develop-
ers, it remains a challenge how to perform customization
without assuming that the code base structure is ready for
customization by design. When only the protocol binary is
available, this is even more challenging since binary analysis
is inherently harder than source code analysis due to the
lack of high-level, semantically rich information about data
structures and control constructs.

(3) Support diverse types of protocol customization in the
design: The challenges in performing customization are fur-
ther escalated when systematizing the support for di�erent
types of customization. For example, there are two types
of customization, disabling modules and tuning parameters
(e.g., window sizes). To realize the former, certain feature
code needs to be excluded at runtime, while one solution
to the latter still keeps the feature code but uses a set of
parameters to form predicates to restrict its execution. These
separate solutions need to be coherently integrated into the
overall system design.

4 SOLUTION DIRECTION
To handle various protocol or application-speci�c constraints, we
propose an access control framework (illustrated in Figure 1) to
unify existing protocol customization practices. We call our ap-
plication of access control to protocol customization as protocol
feature access control. Protocol features are the resources to control,
and the use of these features, e.g., unconditionally or conditionally

OpenSSL protocol entry

Feature 2

Feature access control policy configuration

Feature 1:
• Access policy: Allowed

Feature 3:
• Access policy: Blocked

Feature 2:
• Access policy: Tuning
- Tuning policy: Length of requested 
heartbeat echo bytes <= 1500

 

 

     Execution permitted

     Execution denied

Execution permitted when 
len(RequestEchoBytes) <= 1500
T

Feature 3

Feature 1

Figure 1: Protocol feature access control framework. “T”
means the feature access control policy contains tuning pa-
rameters.

blocking a feature, are speci�ed and controlled along the execution
path by feature access control policies. As a classic area in com-
puter security, access control has a set of relatively mature design
principles, models, and best practices [58, 85, 86, 101]. Thus, utiliz-
ing access control design theories and techniques is a principled,
general and systematic approach to support protocol customization.
Furthermore, we propose to leverage recent advances in program
analysis andmachine learning (detailed as follows) tomake protocol
customization su�ciently automated.

4.1 Program Analysis based Approach
Program analysis enables automatically analyzing the behavior
of computer programs regarding a program property of interest,
e.g., performance [40], correctness [72], and security [52]. With the
main bene�t in automation, program analysis has been proven a
powerful tool for systematically understanding and solving a wide
range of computer software problems [41, 63, 67, 93, 96, 100, 102].
Building upon previous successes, we envision several program
analysis techniques to be applied to address following challenges
for realizing a practical system with systematic and su�ciently
automated support of protocol customization.

(1) Extract clues for protocol customization: In order to sys-
tematically support protocol customization, it is necessary
to� rst understand what types of vulnerabilities can be miti-
gated by protocol customization, and what useful types of
customization methods are. These can be e�ectively learned
from various sources of vulnerability data, e.g., code snip-
pets in the common vulnerability exposure (CVE) reports
and patches (if available), but due to the large data volume,
it is not feasible to manually read all of these code snip-
pets. To address this challenge, we can leverage control and
data� ow analysis to automatically extract vulnerability code
patterns in the reports and customization methods in the
patches. These data are then fed into an analytic system (de-
tailed in §5.1) that harnesses machine learning techniques
to automatically recommend customization options to ad-
ministrators.

(2) Automate protocol customization: To conduct protocol
customization, the proposed system needs to� rst analyze the
code for places to customize, and then transform the code to
enforce the customization request. In this process, the major
challenge is to make these two steps su�ciently automated
to increase e�ciency and prevent human errors. To address
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these challenges, we can leverage program analysis such as
taint analysis techniques, with the help of machine learning
techniques if needed, for the� rst step to automatically iden-
tify and analyze the program properties to localize where
to customize. For the second step, we can leverage program
transformation techniques [70, 77], a typical component in
program analysis tools, to modify the code to support proto-
col customization.

(3) Provide functional correctness guarantees: After a pro-
tocol is customized, it is necessary to ensure that the al-
lowed protocol functionality can still work correctly. Previ-
ous works that apply program analysis to analyze program
correctness (e.g., algorithm correctness [72], protocol cor-
rectness in both design and implementation [45, 46, 79])
inspire us to leverage data and control dependency analysis
techniques for feature dependency analysis, which ensures
the allowed protocol features are not a�ected by the cus-
tomization.

(4) Provide� exible customization options: Protocol customiza-
tion is not simply feature removal. We� nd that there exist
protocol customization practices that still allow a protocol
feature to function but under limited conditions. For example,
the suggested� x for the HPACK bomb vulnerability [21, 24]
is to limit the header size instead of completely disabling
the HTTP/2 support. We call this type of customization as
parameter tuning. This is a more practical solution, since un-
conditionally disabling a feature may not be accepted if the
feature is a core functionality. However, how to con�gure the
tuning parameter is a challenging problem since the tunable
parameters may not be fully documented. If con�guration
is inappropriately set, it may impact the functional correct-
ness. To address this challenge, we can leverage symbolic
execution techniques [83] to systematically identify the set
of parameters and their values for the legitimate use of a
feature (detailed in §5.2).

(5) Support customization for protocol executables: Pro-
gram analysis techniques typically target source code, which
is not always available, e.g., when analyzing commercial
products. Techniques that directly analyze binaries [89, 93]
are attractive for security analysis targeting COTS (common
o�-the-shelf) or malicious programs. We can build upon
these binary analysis systems to provide customization sup-
port even when only the protocol executables are available.

4.2 Machine Learning based Approach
Building upon the history of applying machine learning techniques
to various security domains, such as malware detection [42, 80, 103],
program analysis [43], intrusion detection [71, 92], policy enforce-
ment [97], we see following opportunities in leveraging recent ad-
vances in machine learning to automate the protocol customization
pipeline.

(1) Determine protocol features to be customized: as dis-
cussed in § 4.1, vulnerability patterns can be characterized
from analyzing various sources of vulnerability data using
natural language processing (NLP) techniques augmented
with deep learning models [60, 91]. Semantic interpretation

techniques [75] in NLP are demonstrated useful to extract
structured semantic information by automated learning over
corpora of natural language examples. The recent emergence
of NLP systems [3, 29] into production further demonstrates
the practicability of such techniques in understanding un-
structured human texts. By leveraging the advancements
in NLP, we propose to extract high-level features from pro-
tocol speci�cations and correlate them to the vulnerability
patterns for identifying features to be customized (detailed
in §5.1).

(2) Enforce customization strategies: In the feature localiza-
tion step, one major challenge is bridging the gap between
the interpretation of a protocol feature in some human-
understandable form and at the code implementation layer.
Previous works show great promise in using NLP techniques
to map user expected software behaviors to corresponding
functions in the software implementation [78, 81]. We thus
propose to leverage NLP to learn semantically meaningful
features from protocol speci�cations and documents, which
are thenmapped to the relevant code pieces using supervised
and unsupervised learning methods.

(3) Feature usage monitoring: feature usage logs from run-
timemonitoring can be used to suggest re�nement of current
customization con�guration. Reinforcement learning (RL),
when combined with deep neural networks (a.k.a., deep RL),
has shown unique advantages in adapting to real-world dy-
namics for decision making in network systems [26, 47, 76].
We propose to leverage RL to adjust tuning parameters of a
customization con�guration based on usage logs.

(4) Transfer customization knowledge to new protocols:
when new types of protocols are incorporated into the cus-
tomization environment, before observing enough vulnera-
bility exposures, the invariants of customization knowledge
based on existing protocols can be identi�ed by transfer
learning techniques as deep neural network based repre-
sentations [44], which are then used to predict vulnerable
features and recommend proper customization strategies for
a new protocol.

5 PRELIMINARY DESIGN
In this section, we present a preliminary design of an analytic sys-
tem for recommending customization options. Given the features
to be customized, we further design a feature access control system
to specify access control policies for each of them and realize the
policy enforcement at runtime.

5.1 Customization Option Analytic System
To identify customization options for constructing feature access
control policies, we propose an analytic system (illustrated in Fig-
ure 2) that takes various sources of protocol and vulnerability-
related data, such as protocol speci�cation, protocol software and
CVE database, and leverages aforementioned program analysis and
machine learning techniques to automatically recognize a set of
high-level features and correlate them to CVEs (if any) and code-
level implementation. The features with strong correlation to CVEs
are identi�ed as vulnerable features and recommended to system
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Features recommended 
for customization

Program analysisNLP with deep learning

Supervised and unsupervised machine learning 
with deep neural networks

Protocol specs CVE reports CVE patches

Customization option identification

Protocol spec & code

Feature 1

Feature 2
Feature 3

• Feature 3

High-level feature and 
vulnerability representation

Low-level vulnerability 
code pattern

Final list of features 
to customize

• Feature 2
• Feature 3

Admin input

Figure 2: An analytic system to recommend customization
options to system administrators for a given protocol.

administrators as customization options, while the features to be
customized are� nalized by administrators.

5.2 Feature Access Control System
Given the features to be customized (e.g., output of Figure 2) as
input, a feature access control system, shown in Figure 3, generates
corresponding access control policies and enforces them in the
protocol implementation. Following the classic design of access
control systems, our proposed design has two components: policy
speci�cation, and policy enforcement. In the speci�cation compo-
nent, the user describes the protocol customization requirements
in the form of a list of feature access control policies. To support
runtime customization, such speci�cations are included in a pol-
icy con�guration� le so that users can make customize changes
dynamically through recon�guring this� le.
Policy speci�cation. To support the popular protocol customiza-
tion practices today, we propose to de�ne two types of policies
(illustrated in Figure 1): feature disabling policies, and feature tun-
ing policies that manifest the conditions of legitimate feature usage
by limiting the range of tunable parameters for a targeted feature
(a.k.a., tuning parameters). This design can be extended when there
are future needs, which only needs updates in the underlying com-
ponents without changing the whole system design. Such extensi-
bility and� exibility in supporting multiple forms of customization
is an advantage by design due to the use of access control method-
ology in solving the protocol customization problem. In the support
of feature tuning policies, the set of tuning parameters may not be
fully documented. Thus, both identifying the set of tuning param-
eters and determining the legitimate value of each parameter are
challenging tasks, and are important to ensure the usability and
e�ectiveness of the system. For the latter, it may also a�ect correct-
ness since setting inappropriate parameters may cause malfunction
of the protocol feature. To address this challenge in a systematic
way, we propose to use control and data� ow analysis to identify
the parameters that can a�ect the feature functionality for forming
a candidate set of tuning parameters, and further apply symbolic
execution to narrow down to the parameters (and their legitimate
values) that are relevant to a given feature.
Policy enforcement. For the policies speci�ed by the administra-
tors, the next design component in our system is policy enforcement
at runtime. As discussed in § 3.2, the key technical challenge is to
systematically and e�ectively support protocol customization with
minimized manual e�orts. To address this challenge, we propose to

Feature localization

Policy specification

Access control enforcement

Policy enforcement

Protocol code

Feature 1

Feature 2
Feature 3

Protocol code with access control

Feature 1

Feature 2
Feature 3

Feature 1

Feature 2
Feature 3

 
 
T

Policy config. file

Control & data flow graphs

Machine learning aided 
program analysis

Tunable feature parameters

+ Machine learning aided 
program analysis+

Figure 3: Feature access control system design. “T” means
that feature is customized by tuning parameters, e.g., the
policy con�guration for Feature 2 in Figure 1.

use program analysis techniques, which are capable of automati-
cally identifying and analyzing the program properties of interest
from the program code. These techniques can be applied to both pro-
tocol source code and binaries. Our proposed solution has two steps:
(1) feature localization, and (2) access control enforcement. The lo-
calization step searches the protocol implementation to identify
the parts of code related to the targeted feature in the customiza-
tion policy. The access control enforcement step then leverages
the structure or properties of the identi�ed feature code to apply
customization. In the subsequent step, access control enforcement,
if it is convenient to directly modify the protocol code, e.g., when
the source code is given, we propose to directly add access control
logic around the feature code chunk. For example, to disable the
feature, access control policy checks are added at the code entries to
prevent the feature code from being executed. Compared to other
popular access control enforcement mechanisms, e.g., adding run-
time policy enforcement layer, this approach incurs much smaller
performance overhead since the access control is directly embedded
in and compiled with the code base.

6 CASE STUDY
In this section, we present case studies on several popular network
protocol implementations and code patches for the CVEs in § 2.
Preliminary� ndings validate the need of automation support for
protocol customization to address real-world challenges and the
feature access control framework as a general solution to unify
common customization practices for di�erent protocols.
OpenSSL. Through analyzing the source code of OpenSSL (v1.0.1f),
we� nd at least 97 compiler� ags (with pre�x OPENSSL_NO_) that
have been manually de�ned by developers for disabling various ci-
pher suites, protocol extensions and other features. Moreover, these
�ags appear around 2460 times in 415 source� les across the whole
code base. In particular, the library consists of 24 code pieces across
15 source� les for implementing the TLS/DTLS Heartbeat extension,
which arewrapped by the compiler�ag OPENSSL_NO_HEARTBEATS.
On one hand, the existence of many compiler� ags in OpenSSL
show that feature customization through segregating and disabling
feature-related code pieces may be realistic for real-world pro-
tocol software. On the other hand, it remains a challenging and
error-prone task for developers to manually implement new cus-
tomization options in the existing code base, especially when it is

Session 3: Software and Protocol Debloating FEAST'17, November 3, 2017, Dallas, TX, USA

61



expanding to incorporate new features or extensions. The signi�-
cant manual e�orts required and potential human errors involved
can be minimized if automated feature localization and customiza-
tion enforcement are supported.
Apache HTTP Server. Key HTTP/2 features, including� ow con-
trol, stream dependency & priority, stream multiplexing and com-
pression, are not demarcated using compile-time or runtime�ags
in the HTTP/2 module of the latest release of Apache HTTP Server
(v2.4.x). These features are either all enabled or all blocked (i.e., by
tuning the con�guration parameter mod_http2) at runtime. As a
consequence, it is impossible to selectively enable some features and
disable the rest for avoiding vulnerabilities caused by features (e.g.,
compression, dependency & priority) to be disabled, while ensuring
HTTP/2 continues to operate. Our source code study shows that
the code structure of the HTTP/2 module is based on the HTTP/2
primitives and constructs (e.g., stream, session, worker, multiplexer)
in an object-oriented fashion, upon which the new features are im-
plemented. The implementation of di�erent features are tightly
coupled across the source� les and can hardly be manually sliced
for realizing customization at the feature-level granularity. Though
18 directives exist to allow runtime con�guration of HTTP/2, they
are insu�cient to be used to mitigate vulnerabilities caused by
certain HTTP/2 features [18, 21, 24], because developers hardly
have any clues on possible attack surfaces before security experts
discover them. Such challenge guides us to believe that automated
feature customization, with feature-related code pieces localized
and segregated in advance, is critical for responsive defense against
zero-day attacks targeting newly discovered vulnerable features.
Dependency cycle DoS. The stream dependency & priority fea-
ture in HTTP/2 enables� exible multiplexing of concurrent streams
in one connection, but can lead to severe vulnerability [18]. First,
the RFC recommends the size of the dependency streams to be at
least 100 for parallelism consideration but does not limit its upper
bound [28]. Thus, a malicious client may fool a server to create
many concurrent streams for consuming its memory. Second, cor-
ner cases (e.g., dependency cycles, rapid changes of dependencies),
if ignored, may result in heavy CPU or memory consumption. We
review the commit history of nghttp2 [30] and� nd that several
patches have been made for re�ning the legitimate check for this
feature over the past few years [2, 33, 34, 38], including one for
de�ning a sensible upper bound and a later one for adding a self-
dependency check for detecting cycles. One important observation
from this case is that identifying a proper set of tuning parameters
and their legitimate values in real world is both challenging and
critical. Inappropriate parameters (or values) may cause the attack
mitigation useless or even malfunction of a useful feature.
Access control model validation. We investigate code patches
for the CVEs in § 2 and discover that in 8 out of 20 cases extra
condition check is added to restrict the legitimate circumstances for
allowing the vulnerable feature to be invoked, while the majority
of the rest are� xed by unconditionally disabling it. As shown in
Table 2, 17 of them can be expressed by feature disabling policies
or feature tuning policies with appropriate tuning parameters. This
study shows that the feature access control system is a promising
direction to unify common customization practices for various
protocols.

Policy type CVEs
Feature disabling XMPP dialback [20], XMPP message

carbons [25], OpenSSH information leak [19],
HTTP proxy data leak [6], FREAK [15],
Logjam [17], RC4 [16], CRIME [11],

BREACH [13]
Feature tuning Heartbleed [14], Dependency cycle DoS [18],

Slow read DoS [22], HPACK bomb [21, 24],
Apache integer over�ow [9], HTTP proxy

DoS [5], HTTP_PROXY redirection [23], Range
header DoS [8]

Table 2: Feature access control policy to CVE cases

7 RELATEDWORK
We identify several research areas that are closely related to protocol
customization. In the line of program analysis, various static and dy-
namic analysis techniques [48, 49, 54–56, 59, 61, 68, 73, 84, 90, 94, 95]
are proposed to make control and data� ow analysis on source code
or binary increasingly e�ective. More closely to protocol customiza-
tion, program analysis techniques are applied to analyze protocol
security and correctness [45, 46, 50, 51, 69]. Besides, static or dy-
namic binary rewriting techniques are proposed to transform a
program to meet some customization goals (e.g., bloatware mitiga-
tion) [57, 62, 65, 66, 74, 98, 99]. As future work, we plan to extend
existing program analysis and customization techniques for re-
alizing a practical system to support our protocol customization
solution. In the line of machine learning, deep learning techniques
are recently leveraged in binary analysis [53, 88], intrusion detec-
tion [64] and malware analysis [87]. Our work extends the deep
learning approach to new security domains: protocol vulnerability
identi�cation and prevention. Our proposed protocol customization
system involves a number of compute-intensive program analy-
sis and machine learning tasks. To address the system challenge
of meeting performance requirements, we plan to perform some
study on the performance overhead and bottleneck of our pro-
posed system, and explore the possibility of leveraging previous
works [35, 82] that harness the cluster computing power to paral-
lelize program analysis and machine learning tasks for signifcant
performance speedup.

8 CONCLUSION
In this work, we highlight key research challenges of mitigating se-
curity vulnerabilities through protocol customization and propose
a preliminary approach to address each of them. Preliminary�nd-
ings from real-world case studies show that our proposed feature
access control framework is a promising solution to unify common
protocol customization practices.
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