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Safety compliance is paramount to the safe deployment of autonomous vehicle (AV) technologies in real-world
transportation systems. As AVs will share road infrastructures with human drivers and pedestrians, it is an
important requirement for AVs to obey standard driving rules. Existing AV software testing methods, including
simulation and road testing, only check fundamental safety rules such as collision avoidance and safety
distance. Scenario-dependent driving rules, including crosswalk and intersection rules, are more complicated
because the expected driving behavior heavily depends on the surrounding circumstances. However, a testing
framework is missing for checking scenario-dependent driving rules on various AV software.

In this paper, we design and implement a systematic framework AVChecker for identifying violations of
scenario-dependent driving rules in AV software using formal methods. AVChecker represents both the code
logic of AV software and driving rules in proposed formal specifications and leverages satisfiability modulo
theory (SMT) solvers to identify driving rule violations. To improve the automation of systematic rule-based
checking, AVChecker provides a powerful user interface for writing driving rule specifications and applies
static code analysis to extract rule-related code logic from the AV software codebase. Evaluations on two
open-source AV software platforms, Baidu Apollo and Autoware, uncover 19 true violations out of 28 real-world
driving rules covering crosswalks, traffic lights, stop signs, and intersections. Seven of the violations can lead
to severe risks of a collision with pedestrians or blocking traffic.
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1 INTRODUCTION

Emerging autonomous vehicles (AVs) hold great promise in transforming today’s transportation
systems and mobility services while driving safety is the most important design requirement
before their real-world deployment. The AV is a complicated cyber-physical system where a
central AV software interacts with digital sensors and physical devices to automatically drive the
vehicle. Since the AV software controls the AV’s driving behavior, the testing of AV software is
of great importance for ensuring driving safety. Unanimously agreed by AV software vendors
and government authorities, the AV developers should validate the AV software’s compliance
with essential safety standards (e.g., traffic laws, voluntary safety standards from NTHSA [1],
Responsibility-Sensitive Safety [54]).

Existing AV software safety testing approaches (e.g., simulation, track, or road testing) [2, 4, 13]
mainly use the black-box dynamic testing. They collect driving traces from the real-world test
drives or simulations and then verify their safety properties. However, these methods only target a
limited set of driving rules related to basic safety requirements such as collision avoidance and
safe distance on urban roads or highways [29]. Such fundamental rules should always hold during
the drive and only consider relation among vehicles. More complicated driving rules including
on-road crosswalks, four-way stop signs, and intersections with traffic lights are ignored by general
AV testing techniques. We name the above rules scenario-dependent driving rules because the
expected behavior of an AV heavily depends on its location as well as surrounding circumstance. For
instance, to decide to drive into an intersection, the AV needs to consider the whole circumstance
including its lane and direction, the traffic light, pedestrians on the crosswalk ahead, and the
behaviors of all other vehicles. To check these complicated rules, road/track testing or simulation
requires test cases with high quantity and diversity to enumerate possible map layouts and different
behaviors of all pedestrians and vehicles, which is difficult due to regulation barriers, high cost/risk
of real-world testing, and the complexity of the driving scenarios even in simulators. In addition, a
general framework is still missing for testing driving rule compliance on AV software. Existing
AV testing methods are mostly designed for one specific AV software or one specific driving rule.
For example, different companies launch road testing for their own AV systems [2, 4, 13] and
AV-FUZZER [41] (simulation-based) only checks collision avoidance rules. A general framework is
in need to support various AV software and a wide range of driving rules simultaneously.

To address this limitation, we propose AVChecker, a framework for AV developers to system-
atically find violations of complex scenario-dependent driving rules in AV software using formal
methods. Instead of enumerating test cases in dynamic testing, AVChecker proposes a formal repre-
sentation to model complex driving scenarios considering both the map layouts and behaviors of
moving objects. Then we can apply formal verification techniques to identify driving rule violations
by analyzing the formal representations. To start with, AVChecker takes driving rule specifications
and source code of AV motion planning (i.e., the module implementing driving rules) as inputs. The
driving rule specifications are formatted in the proposed formal representation which is encoded in
Satisfiability Modulo Theory (SMT), and provided by issuers of traffic rules. Meanwhile, a pipeline
of static code analysis extracts AV’s driving behaviors from the AV source code with the assistance
of code annotations provided by AV developers. The driving behaviors are encoded into a finite
state machine based specification, called behavior specification. Next, we apply formal methods
(i.e., SMT theorem proving) to reveal the violation between the driving rule specification and AV’s
behavior specification. The violation means that at one specific moment, the AV’s driving behavior
is different from the expected behavior defined in the driving rule. As long as an violation exists
between the two specifications, the SMT solver can generate a counterexample which helps in re-
producing the identified flaw. AVChecker will post-process the generated violation case to construct
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a test case of simulation, which can help to rule out false positives or debug the software. Though
AVChecker does not handle perception or machinery failures and cannot guarantee end-to-end
driving safety, it is the best effort for validating driving rules implementation which is one of the
most critical modules of AV driving.

To identify rule violations through formal methods, our work addresses two key challenges.
First, performing a direct comparison between driving rules expressed in natural language and
AV software code is impractical because of the semantic gap. To bridge this gap, we propose a
domain-specific formal representation modeling traffic scenes. Both rule specifications and AV’s
behavior specifications are based on the same formal representation so that they can be analyzed in
the same domain. In addition, AVChecker provides user interfaces with various levels of abstractions
to minimize manual effort for generating specifications. Second, characterizing continuous driving
scenarios requires modeling real-world physical dynamics in continuous time and space domains,
which is challenging to realize using the theory of SMT because of the complexity. Thus, the model
of driving scenarios should abstract the real world as much as possible but maintain necessary
expressiveness for rule compliance checking. We notice that the driving rule handling in AV
software is executed in cycles and the driving behavior is decided in each cycle according to the
circumstance of the current moment. AVChecker abstracts the continuous driving behaviors by
splitting the time sequence into moments and checks AV’s driving decisions on each moment. To
achieve the abstraction, AVChecker constructs one moment of the driving scenario using SMT
symbolic variables, called symbolic traffic snapshot. AVChecker detects violations when AV’s
behaviors break the driving rule at any possible traffic snapshot in this scenario without the need
of considering over-complicated details of physical dynamics during a time sequence, making our
SMT-based approach scalable on complicated driving scenarios.

We prototype AVChecker using LLVM [38] and Z3 SMT solver [25], and evaluate it on two
open-source AV software platforms, Baidu Apollo [3] and Autoware [6] which have 108K LOC and
42K LOC in their planning modules respectively. Our prototype is able to detect 19 true violations
with driving rules for crosswalks, traffic lights, stop signs, and intersection scenes that are defined
in driving manuals from the Department of Motor Vehicles (DMV) or common safe driving practices
on both platforms. The simulation-based validation further confirms that the violations are all true
positives and 7 of them may lead to severe safety consequences, including the risk of hitting a
sprinting pedestrian on a crosswalk or blocking traffic at intersections. The violations are caused
by the incomplete implementation, ignorance of corner cases, or bugs. The specification API
of AVChecker is demonstrated to be effective for reducing AV developer’s specification efforts,
requiring less than 10 lines of code for specifying different complex scenes for the evaluated
driving rules and reducing manual specification efforts by 15x. Moreover, the snapshot abstraction
significantly reduces the state space so that AVChecker can complete the violation identification
within 13 seconds for each targeted rule.

The contributions of this paper are as follows:

1) We propose an AV domain-specific abstraction, which is a formal representation amenable to
SMT solving, to bridge the semantic gap between software code and safety specifications. This new
abstraction simplifies the representation of infinite-state space in the physical world and addresses
the scalability challenge in SMT-based driving rule compliance checking.

2) We design and implement AVChecker, to the best of our knowledge, the first general framework
for checking scenario-dependent driving rules in AV software in a systematic manner. Using the
user interface of AVChecker, AV developers can reveal rule violations in the code logic against
predefined driving rule specifications with the minimum manual effort.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 15. Publication date: June 2021.



15:4 Qingzhao Zhang et al.

3) We evaluate AVChecker on Baidu Apollo [3] and Autoware [6] to check rule compliance with
28 DMV’s driving rules. AVChecker uncovers 13 violations in Apollo and 6 violations in Autoware,
which are all validated by simulation.

2 BACKGROUND & MOTIVATION

In this section, we introduce the background of AV’s driving rule enforcement (§2.1), limitations of
previous AV testing work (§2.2), and our design goals (§2.3) to address the limitations.

2.1 Driving rule enforcement in AV software

Handling driving rules is one of the critical components of AV software systems. The AV system is
composed of a processing pipeline with several key modules to perform self-driving functionalities,
including localization, perception, prediction, routing, motion planning, and control. In particular,
motion planning aims to generate collision-free motions for moving the vehicle from point A to B
by handling on-road traffic safely and legally. It takes the static map reference, moving obstacles,
and all road blockages as input. It outputs controller directives including lateral driving bias, the
leading vehicle to follow, the aggressiveness of distance keeping, and maximum speed [60].

There exists complex rule-based logic in motion planning. We studied driving rule enforcement
in Baidu Apollo, an open-source AV software platform that supports most representative driving
rules. The typical traffic rule enforcement logic handles common traffic objects, e.g., traffic lights,
stop signs, crosswalks, and key driving actions, e.g., stop, overtake. At the run time of motion
planning, the rule enforcement is performed for each execution cycle (100ms) using the latest
perceived traffic scene.

Violation detection of AV’s driving rule enforcement is indispensable. As suggested by the
Baidu Apollo developers, autonomous driving should follow traffic regulations at all times [28]. In
particular, we survey driving rules in driving manuals published by Department of Motor Vehicles
(DMV) of US states [5, 8, 9, 11, 12] and check these rules on Apollo and Autoware.

Table 1. Comparison of AV testing or validation approaches.

Core technique Unit | Fuzz Simulation SMC Model SMT
Tool [3] [7] [41] [47] [15] [48] [18] [51] [49] AVChecker

oot Low-level bugs v v X X X X X X X X
Objective &

ftJ ot v Fundamental safety rules X X vV v v v vV Vv v X

ol testing Scenario-dependent rules X X X X X X X X X v

Bug-free Code-level X X X X X X X X X X

assurance Spec-level X X X X X X X V v v

. AV systems X X Vv v vV v v v vV vV

Generality Driving rules - - X X X X X X X v

3

The first row: Unit test [3], Fuzzing [7], Simulation [15, 41, 47], Statistical Model Checking [18, 48], model-based formal checkers [49, 51], SMT (AVChecker).

2.2 Limitations of previous AV testing

Table 1 lists existing software testing methods on AVs, including unit tests [3], fuzz [7], simulation
case generation [15, 41, 47], Statistical Model Checking [18, 48] and model-based formal checkers [49,
51]. Track and road testing are not listed in the table.

Existing methods have the following limitations on identifying driving rule violations. First,
none of the existing tools checks complicated scenario-dependent driving rules on AV software
code. Conventional software testing such as unit tests and fuzzing focuses on low-level bugs (e.g.,
program crashes) in the source code. Existing simulation-based AV testing focuses on fundamental
safety violations such as collision avoidance. Existing formal methods for AV testing verify whether
a driving rule can avoid collisions in the real world, which does not consider code implementation.
AVChecker is the first study to check general complicated driving rules on AV software. Second,
neither unit/fuzzing tests or simulation can ensure the testing completeness since they cannot
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Fig. 1. Overall workflow of AVChecker framework.

enumerate sufficient test cases to cover all corner cases. By applying formal methods, if AVChecker
finds no violations and all specifications are assumed to be sound, the specifications are violation-
free. Although AVChecker cannot provide an end-to-end safety guarantee because of inaccuracies in
specification generation, it is the best effort service to achieve a low false-negative rate in violation
detection. Third, existing tools focus on specific rules, resulting in poor generality for tool design.
AVChecker, as a framework, supports various AV software and driving rules simultaneously.

2.3 Design goals

AVChecker should achieve the following design goals to address the limitations of previous work.

First, AVChecker should be able to identify real violations of scenario-dependent rules. The
violation identification should be correct, i.e., found violations are validated to be realistic. After
generating violation cases using formal models, AVChecker applies simulators (§3.6) to confirm
whether the violation can happen in the real world, under the assumption that the simulator is
correct. In addition, the violation identification should be complete at the specification level. In other
words, there is no missed violation among the checked specifications assuming all specifications
correctly represent AV’s behavior and driving rules, as discussed in §3.5. Note that the generation
of specifications involves code analysis and manual work so that inaccuracies exist (§6). AVChecker
requires a manual validation of the generated specifications to ensure their correctness.

Second, AVChecker should be general for various AV software systems and driving rules. Espe-
cially, AVChecker should support AV software which makes driving decisions in cycles, which is
the common design of existing AV systems [3, 6], and general scenario-dependent driving rules
including crosswalks, intersections, etc. In addition, AVChecker as a framework promotes generality
by isolating the interfaces for AV software and driving rules. Changing either AV software or
driving rules does not affect the other side.

Third, AVChecker should be easy to use. Despite the complexity of the low-level source code and
rule details, developers should not be required to handle a large amount of tedious manual work.
Though we require manual annotations on software code from developers, we design AVChecker’s
code analysis and user interface to minimize the manual effort.

3 SYSTEM DESIGN

AVChecker aims to validate whether the driving behaviors implemented in AV software meet the
requirements of real-world scenario-dependent driving rules. The core of AVChecker is an AV traffic
model (§3.2) that formally represents traffic scene snapshots using SMT symbolic variables. One
symbolic snapshot refers to one moment of a traffic scene. It presents the status of traffic objects,
including moving objects such as vehicles and pedestrians as well as stationary landmarks such as
crosswalks and intersections. For example, the position of a vehicle is represented by two symbolic
variables: a two-dimensional coordinate point. All specifications in AVChecker are encoded into
SMT syntax using the AV traffic model (§3.3).
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Given the AV traffic model, AVChecker achieves the systematic violation identification through
three modules, as illustrated in Figure 1. Semantic analysis (§3.4) analyzes the input AV software
and automatically extracts the behavior specification, which represents the code logic of handling
driving rules in AV software. The extraction process is achieved by a pipeline of static code analysis,
which identifies rule-related code, and encodes the code logic into the behavior specification. In
addition, annotations from developers are required to bridge source code and AV traffic model but
AVChecker provides powerful APIs for writing annotations to minimize this manual effort. Violation
identification (§3.5) then reveals the inconsistency between the behavior specification and the rule
specification. The rule specification is the formal representation of a driving rule, provided by
traffic rule issuers. AVChecker uses z3 SMT solver to reason the existence of violations between the
rule specification and the behavior specification. If z3 produces one counterexample that identifies
a violation between the two specifications, the counterexamples can be used as test cases for
further debugging. Validation (§3.6) subsequently runs in an AV simulator to validate the discovered
violation and thus rules out false positives. The validation module automatically translates the
counterexample produced by the verification module into a test case for the simulator, and the
simulator will demonstrate the violation in a realistic setting. In addition, AVChecker provides
framework support for various customization. Developers can extend the user interfaces in the
AV traffic model to further reduce manual effort, customize code analysis to better fit a specific
codebase, or change the simulator for validation.

We claim the accuracy and generality of AVChecker as follows. If the violation identification
module cannot produce violations, it guarantees the non-existence of violations among specifica-
tions under the assumption that rule and behavior specifications are correctly formulated. However,
the generation of specifications is not guaranteed to be accurate because of the limitations of
code analysis as well as the untrusted manual annotations. AVChecker needs the inspection and
refinement from AV developers to ensure the correctness of specifications. Validation module
rules out false positives of violations caused by the gap between the abstracted model and the real
world, assuming the correctness of simulators. In terms of generality, we assume the AV software
code satisfies the formulation in §3.3.2 and can be compiled by LLVM, which is satisfied by all
open-source AV software as far as we know. Also, we assume the driving rules satisfy, or can be
transformed to, the "condition and action" structure defined in §3.3.1.

3.1 Example: crosswalk rule in Baidu Apollo

To demonstrate AVChecker’s methodology, we check one crosswalk driving rule on Baidu Apollo
software as one example.

The driving rule says that stop for pedestrians on your side of an oncoming crosswalk (rule 2 in
Table3). This rule illustrates a common structure of driving rules: the driver should take a specific
action when a condition is met. In this case, the action is “stopping at the crosswalk” and the
condition is a set of sub-conditions connected by ANDs, including "pedestrian on crosswalk",
"crosswalk is in front of AV" and "pedestrian is on the current road".

AV software such as Baidu Apollo uses a different way to enforce crosswalk rules. The related
code segment is shown in Figure 2. AV’s planning module is executed in cycles and maintains
a software state indicating the current status of the driving task, as mentioned in § 2.1. In each
execution cycle, the software accepts the latest perceived traffic scene, updates the software state,
and optionally takes specific driving actions. The update of software states and action-taking is
under some conditions, which are determined by the branches and control flows in the program.

Although general driving rules and AV software code semantics have different structures, the
action and the condition are the common components. Actions refer to a finite set of possible
driving actions during handling driving rules. Conditions are constraints on traffic scenes, which
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means the condition can be true or false given one moment of the traffic scene. AV traffic model
(§ 3.2) defines both actions and conditions so that we can build formal specifications (§3.3) to
represent driving rules as well as AV’s behavior. In the following sections, we will demonstrate
how AVChecker processes this example case to identify rule violations.

3.2 AV traffic model

AV traffic model is a toolkit for representing actions and conditions that appeared in the driving
rules and AV software. The representation of actions is straightforward. The model defines a
finite set of possible driving actions including “stop_at_crosswalk”, “stop_at_stop_sign”, “park”, etc.
For representing conditions, the model first formally representing a traffic scene snapshot using
symbolic variables, which contains the status of on-road objects in one moment, including shape,
position, velocity, and other properties of objects such as vehicles and crosswalks. Then we uses
constraints on the symbolic traffic snapshot to represent the conditions. §3.2.1 will introduce the
representation of symbolic traffic snapshots and the construction of snapshot constraints.

3.2.1 Snapshot representation. AV traffic model provides a user interface with four layers including
base variables, geometric interface, traffic objects and high-level interface, from low-level to high-level
abstraction. In addition, the interfaces can be extended to support specialized traffic scenarios.

Base variables are SMT symbolic variables, which together represent a symbolic snapshot.
By assigning concrete values to base variables, a symbolic snapshot becomes one concrete one.
However, base variables are not comprehensible for users so that we have higher-level interfaces.

Geometric interface. Decision making in AV mainly depends on the geometric information of
the surrounding environment in a two-dimensional space. The geometric interface uses AV-centric
S-L coordinate [28, 54], as the two-dimensional coordination system, due to its simplicity. Given the
current lane of the AV, an S-L coordinate point represents the specific position where S denotes the
distance along AV’s trajectory, and L denotes the lateral distance from the AV. The S-L coordinate
is commonly used by robotic systems and can simplify our representation since it is AV-centric:
origin as AV’s position and S axis as AV’s trajectory.

Based on the S-L coordinate system, we define geometric objects: point, line and area. (1) Point.
A point in the two-dimensional coordinate system is a tuple of two symbolic values representing
coordinates. For example, a point p = (I, s) where [ and s present L and S coordinate, respectively.
(2) Line. A line is a function taking a point as input and returning symbolic binary output indicating
whether the point is on the line. Formally, the line [ is a function [ : P — {0, 1} where P is the set
of points. (3) Area. Similar to lines, an area a are also represented as a function a : P — {0, 1}.

In addition to geometric objects, we provide geometric APIs to describe geometric relationships.
Formally, each geometric API accepts geometric objects as arguments and returns a boolean
expression. We implement the following APIs which are necessary for describing traffic scenes. (1)
Point in Line/Area. Given a point p and a line/Area m, return m(p). (2) Line/Area cross Line/Area.
Given two lines or areas m and n, return 3P, m(p) A n(p). (3) Line/Area in Line/Area. Given one
line/area m and area n, return Vp, m(p) — n(p).

Though the formula of geometric relations contains quantifiers, we apply quantifier elimina-
tion [21] in our implementation to improve the scalability of SMT proving.

Traffic objects. Both road geometry and on-road traffic are inputs to the motion planning of
common autonomous driving systems [39, 44, 54, 58, 60]. Based on base variables and geometric
interface, we are able to define these traffic objects including vehicles, pedestrians, intersections,
crosswalks, stop signs, traffic lights, lanes, roads, etc. We adopt an object-oriented approach that
the traffic objects have their own properties.
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We divide traffic objects into static ones and mobile ones. Static objects are immovable landmarks
including traffic lights, stop signs, intersections, crosswalks, lanes, etc. Static objects have properties
such as position (a point), size (a point), and boundary (an area). Mobile objects (i.e., vehicles,
pedestrians) have all properties of static objects plus some extra properties such as velocity (a
point) and trajectory (a line). The traffic objects can have customizable extra properties to extend
the expressivity of the model. We list some properties implemented in our prototype as follows. (1)
Traffic lights have an integer property “color” representing the signal color. (2) One lane object
and one road object are defined to represent AV’s lane and road respectively. They both have “left
distance” and “right distance” properties representing the distance from AV to the road/lane’s
boundaries. (3) Intersections have integer properties defining how many roads and lanes are
connected by themselves and label all roads or lanes with IDs. (4) Vehicles have an integer property
“turn direction” indicating it is going straight or turning left/right, a “lane id” representing the lane
it is driving on, and a real number property “waited time” indicating how long it has been stopped.

High-level interface. The high-level interface provides more flexible and powerful APIs to
further improve the usability of the AV traffic model. In our implementation, we summarize a
few frequently used logic in AV software as high-level APIs. For instance, API TrajectoryCross
determines whether two mobile objects will collide with each other based on their trajectories
and API Wait determines whether a vehicle is waiting behind a stop line based on its position and
velocity. Note that developers can freely define customized APIs in the high-level interface.

Snapshot constraints. Given the four layers, a symbolic snapshot is constructed by traffic
objects at a high level and base variables at a low level. Besides, there is always one constraint
restricting the snapshot. In AV traffic model, we define a default constraint restricting the snapshot
to comply with real-world settings. For example, all traffic objects have a limited size and velocity,
object properties have their own definition domains, the crosswalks or stop signs are always on
the roads, and so on. We call the default constraint realistic constraint.

The symbolic snapshot can also represent specialized traffic scenes by adding other constraints
other than the realistic constraint. For instance, to represent the crosswalk rule condition in § 3.1,
we first consider a one-pedestrian scenario and initialize one AV, one road, one crosswalk, and one
pedestrian in the AV traffic model. Then the rule’s constraint is as follows.

And(Approach(ego, crosswalk), In(pedestrian, crosswalk), In(pedestrian, road))

In the constraint, ego means the AV (a special instance of vehicles), And is the built-in connective
of SMT formula, In is the geometric API point in area and Approach is a high-level API representing
that the crosswalk is ahead of the AV.

In summary, besides a set of actions, the AV traffic model defines a set of traffic objects, a realistic
constraint, and a four-layer user interface.

3.2.2  Model expressivity and abstraction. Similar to existing safety models on autonomous driv-
ing [49, 51, 54], the AV traffic model is abstracted from the real world and inevitably cannot include
all details in real-world scenarios. The AV traffic model adopts abstractions to alleviate the modeling
burden while maintaining sufficient expressivity. Since all traffic snapshot constraints are con-
structed by a set of atomic constraints (e.g., rule condition in §3.1 has three atomic sub-conditions),
the AV traffic model has sufficient expressivity if it can represent all the atomic constraints.

After studied collected driving rules and AV software, we classify the driving rule related atomic
constraints into two types. First, geometric information, i.e., the relation among objects’ position,
size, bounding box, velocity, and trajectory. The rule condition in § 3.1 is one example. Since
the model defines a complete set of APIs for representing the relations among points, lines, and
areas in a two-dimensional space, it can completely represent the geometric information. Second,
history information. Some constraints contain the states of traffic objects in the past and we use the
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properties of traffic objects to represent the history information as long as the history states can be
represented by finite variables. For example, whether the vehicle has been stopped for enough time
is one atomic constraint mentioned in stop sign rules. In this case, the model assigns vehicle object
a non-negative real number property called “waited time” indicating how long the vehicle has
been stopped and adds an constraint of its range (i.e., zero when the vehicle is not waiting) to the
realism constraint. In our prototype, we defined a minimum set of object properties to satisfy the
requirement of checking our test cases in the experiment (§ 4.2) but developers can freely add more
object properties to address other historical information. Due to the extendability of the model, the
model has sufficient expressivity on the history information.

While assuring the sufficient expressivity of the model, model abstractions are necessary be-
cause of the limitation of SMT-based theorem proving. SMT can efficiently solve linear constraint
satisfaction problems but has scalability problems when solving nonlinear problems. As a result,
we reduce nonlinearity of the AV traffic model through following abstractions.

First, bounding box representation. Complicated shapes of the objects’ boundaries cost many
symbolic variables and constraints to represent, which harms the efficiency of the SMT solving.
However, driving rules and AV software both focus on relations among bounding boxes rather than
their shapes. As a result, the shape of bounding boxes is a redundant detail for checking driving
rules. In our model, we set the default shape of areas as a rectangle whose edges are parallel to
coordination axes, thereby making area representation light-weight. A rectangle only requires 4
symbolic values (i.e., 2-dimensional position and size) and a simple constraint (i.e., the value of size
is positive). The abstracted bounding boxes can still represent all geometric relations (i.e., line/area
cross area, point/line/area in area) so that the model expressivity is preserved.

Second, trajectory representation. It is common for AV software to check whether the trajectories
of two objects are overlapped. In the real world, the trajectories are usually curves along the lanes.
However, it costs too much for a formal model to represent the arbitrary lane layout and curves.
To solve the problem, we regard the ray starting from the position with a symbolic direction
as the trajectory. The ray representation can represent all geometric relation about trajectories
mentioned in driving rules (i.e., trajectory cross an area or another trajectory) except one limitation:
unlike curves, two rays can have at most one intersection point. However, even in the complicated
intersection scenarios, two vehicles’ trajectories can have at most one intersection point so that
the limitation does not affect driving rule checking.

3.3 Specification

Based on the AV traffic model, we define rule specifications representing the real-world driving
rules and behavior specifications representing code logic implemented in AV software. In the
following sections, we notate the set of actions as A and the AV traffic model as M.

3.3.1 Rule specification. Driving rule specification is a formal representation of a real-world driving
rule which defines that a specific driving action should be take when the current traffic snapshot
satisfies a constraint. The specification of the crosswalk example in § 3.1 is defined as follows:

action = stop_at_crosswalk
constraint = And(Approach(ego, crosswalk), In(pedestrian, crosswalk), In(pedestrian,hroad))
type = 1

Formally, the rule specification is defined as a tuple Spec, = (M, a, Cy, u) where M is the AV
traffic model, a € A refers to one action, and C, C ¥ is a constraint on traffic snapshots, called rule
constraint. All mentioned objects (i.e., ego, crosswalk, pedestrian, and road) are defined by AV
traffic model. Especially, we support two types of rule specifications. If the rule type identifier y = 1,
the vehicle must take the action when the rule constraint is met. Otherwise, if i = 0, the vehicle
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must not take the action when the constraint is satisfied. The above example rule specification is
a “must” type rule and its constraint is explained in §3.2.1.

3.3.2  Behavior specification. In this section, we present the specifications we used to describe the
AV’s driving behavior related to driving rules.

Formulation of AV motion planning. As mentioned in §2.1 and §3.1, AV motion planning
executes its planning algorithm once per execution cycle. AV motion planning manages a software
state, which is a set of state variables recording necessary information about the current traffic
scenario. In each execution cycle, the AV planning module accepts the current traffic snapshot
(i.e., on-road traffic and map information represented in a three-dimensional coordination) and the
current software state as input. Then it generates driving actions and updates the software state
according to the above inputs.

Correspondingly, we use a finite state machine scheme to formulate AV driving rule enforcement,
which is part of AV motion planning. In the state machine, the inputs are traffic snapshots and the
states are various software internal states. The state-transition function refers to the code logic of
updating state variables, which accepts two states and outputs the constraint of snapshots when
transiting one state to the other. In addition, there are action constraints representing the code logic
of making driving decisions, which accepts one state plus one action and outputs the constraint of
snapshots when taking the specific action on the state. Formally, given the action space A, the state
machine maintains infinite software states S, state transitions ¢ (i.e., state s; is updated to s; iff the
snapshot constraint §(sy, s2) is satisfied) and action constraints « (i.e., action a is taken on state s;
iff the snapshot constraint a(s;, a) is satisfied).

Specification design. The behavior specification adopts the state machine formulation. The
specification first lists the state variables for identifying the state space, and then presents state
transitions as well as action constraints. An example specification about the crosswalk example
(§3.1) is as follows:

state_vars = [Bool finished]

states = {SO: finished==False, S1: finished==True}

transitions = {S0->S1: Not(Approach(ego, crosswalk))}

actions = {S0: {"stop_at_crosswalk": And(In(pedestrian, crosswalk), Or(pedestrian.position.L<=4, ...), ...)}}

Formally, the behavior specification is a tuple Spec, = (M, S, 8, @), where M is the AV traffic
model, S is the state space, § is the transition constraints and « is the action constraints.
Especially, we identify the state space S by extracting state variables from the software. State
variables are special in terms of liveness and mutability because they are globally alive across
different cycles and get updated in each cycle. We deploy code analysis to automatically identify
state variables as mentioned in §3.4.2.

As for the example, there is one state variable finished and one transition assigning finished from
false to true, thus there are two states where finished is true or false. The stop_at_crosswalk action
is only possible to be taken when finished is false.

3.4 Semantic analysis

The semantic analysis is a code analysis pipeline for extracting the behavior specification from AV
software and is built on LLVM [38], a popular compiler infrastructure for building code analysis
frameworks [53]. The analysis accepts a set of annotations on the source code from AV developers
(§3.4.1), compiles the source code to LLVM Intermediate Representation (IR), and then applies a
domain-specific static code analysis to generate the behavior specification (§3.4.2). An example of
the semantic analysis in shown in Figure 2 on top of Baidu Apollo (§3.1). Since Baidu Apollo is a C++
project, the source code samples in this section are written in C++. However, our code analysis
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Fig. 2. An example of extracting the behavior specification from AV software code. Developer-provided
annotations are notated by red boxes and arrows. We show sliced LLVM IR and semantic IR in C++ source
code style for demonstration though AVChecker processes IR in the instruction level.

pipeline is also compatible with other programming languages because of LLVM’s compatibility
with various frontends.

3.4.1 Annotations. The annotation provides semantic information of the AV software by linking
elements in the source code with their corresponding expressions in the AV traffic model. Its format
is written as an equivalence function where the left side is one statement, variable, or function in
the source code and the right side is one action, expression, or API defined in the AV traffic model.
Based on different types of expressions used in the equivalence function, annotations are classified
into action, variable, and function annotations.

Action annotations identify which statements in the source code make the driving division.
While writing the equivalence function, its left side is a pattern of the statements and its right
side is the identifier of one specific action. As an example in Figure 2, we link Apollo’s function
BuildStopDecision with action stop_at_crosswalk with the following annotation:

{"statement”: "function_call®, "function”: "util :: BuildStopDecision (...)"
"parent_function”: "apollo ::planning :: Crosswalk :: MakeDecisions (...) "} = stop_at_crosswalk
In this case, we identify the function call statement using the signature of the callee function
and the parent function. Developers can also use other ways such as file name or line number.
Variable annotations maps variables that affect the driving decision in code (e.g., traffic objects
and their size, position, velocity or trajectory) to expressions in the AV traffic model. The left side
is a pattern of source code variables while the right side is an expression defined in the AV traffic
model, and both sides should have the same semantics. For instance, in order to provide semantic
information of the variable crosswalk_overlaps_ in Figure 2, we need to define the annotation:

{"variable": "class_property", "class”: "apollo::planning:: Crosswalk", "name": "crosswalk_overlaps_"}

= [crosswalk]

The variable pattern identifies the class property "crosswalk_overlaps_" which records the
observed crosswalks. The right side is the crosswalk object defined in the AV traffic model.

Function annotations links functions in the source code, mainly including functions calculating
geometric relations, to APIs defined in the AV traffic model. Although these functions are called in
multiple places in the source code with different parameters, their semantics remain unchanged. In
this case, we use one function annotation with parameters to annotate all related function calls at
one time to avoid repeated annotations and save manual effort. In Figure 2, function IsPointIn in
Baidu Apollo has an annotation as follows:
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{"function": "apollo ::common:: math:: Polygon2d:: IsPointIn(Vec2d)", "arguments": ["area", "point"]}
= {"function": In, "arguments": ["point", "area"]}

In this case, the function IsPointIn from the source code and the model’s API In (geometric
relation “point in area”) share the same semantics and both have two arguments. The annotation
states the function signature of IsPointIn and the name of API In. Moreover, there is a list of
arguments on both sides of the equivalence function, which have the same elements but in different
orders. The two argument lists indicate the mapping of arguments. Based on these information,
we can construct the in-model expression which has the same semantics as the return value of
crosswalk_overlap.IsPointIn(obstacle_pos) in Figure 2. First, function IsPointIn is mapped to API
In. Second, the arguments of IsPointIn, crosswalk_overlap and obstacle_pos are translated to in-
model expressions crosswalk.boundary and pedestrian.position respectively according to other
annotations. Third, we fill translated arguments into API In in the right order according to the
argument lists in the function annotation. Finally, crosswalk_overlap.IsPointIn(obstacle_pos) is equal
to in(pedestrian.position, crosswalk.boundary) in semantics.

3.4.2  Pipeline of code analysis. Semantic analysis builds the behavior specification through a series
of code analysis techniques including program slicing, semantic extraction and symbolic execution.
Before code analysis, AVChecker first compiles the AV software to LLVM IR and identifies entries
and exits of analysis. Entries are the starting execution point of the motion planning module while
exits are the annotated actions.

Program slicing picks the code of driving rule handling from the original large codebase to
minimize the code size to analyze. First, AVChecker constructs a customized call graph. A function
should be included in the call graph if and only if it could be invoked on at least one possible
execution path from entries to exists. Second, AVChecker traverses this call graph to perform
instruction-level slicing. The slicing in each function is a backward process starting from a set of
sink points. The sink points include function calls to other functions in the call graph, exits, and
return instructions if exist. Then, AVChecker selects a subset of instructions that has control or data
dependencies on these sink points. The selected instructions construct the final sliced LLVM IR
program which captures the minimal code for understanding AV’s driving rule handling logic.

After slicing, we pinpoint state variables (§3.3.2) in the code through pattern matching. State
variables have finite definition domain (i.e., in the type of boolean values or integers), are read or
written in the execution cycle, have dependencies on the actions, and are not annotated (i.e., no
relation with AV traffic model). By identifying the state variables and all updates on them in the
sliced code, AVChecker can now construct a state machine where states represent different values of
state variables and transitions refer to one update on the state variables. However, compared with
the definition of the behavior specification (§3.3.2), transition or action conditions are missing. The
next two steps, semantic extraction, and symbolic execution are going to extract the constraints
and complete the behavior specification.

Semantic extraction transforms the sliced LLVM IR to another intermediate form where all
variables are expressions defined in the AV traffic model and all operators are compatible with SMT
formula. We call this intermediate form semantic IR.

The translation from sliced LLVM IR to semantic IR is done instruction by instruction based
on two lookup tables: variable lookup table and operator lookup table. The variable lookup table
contains all variable and function annotations (§3.4.1) and maps variables in sliced LLVM IR to
expressions in the AV traffic model. The operator lookup table maps operators in LLVM/C++ to
operations that are compatible with SMT. Most LLVM’s arithmetic and comparison operators
have corresponding SMT operators. For example, from LLVM’s add/fadd, sub/fsub, mul/fmul,
udiv/sdiv/fdiv to SMT’s “+,-7,/”, from LLVM’s icmp/femp gt/lt/eq to SMT’s “>,<,=". Typecasting
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among different bit widths in LLVM is all mapped to equivalence in SMT formula because SMT
implements real numbers, integers, and boolean values without considering bit width. For memory
operations such as load and getelementptr, AVChecker applies static pointer analysis (e.g., SVF [56])
to identify which variable the address is stored to and maps the memory access to one simple
assignment. For example, considering the load instruction a = load addr. If we know addr stores
variable b, then the load instruction can be mapped to the assignment a = b. Note that a pointer can
reference different variables depending on which path the program is executed. In this case, the
semantic IR records all the possible variables and their corresponding parent basic blocks, which
is similar to a phi instruction in LLVM [38]. Semantic IR a = phi[b bb1, ¢ bb2] states that, when
executing this instruction, variable a is assigned by b if the last basic block of the execution is bb1
and is assigned by c if the last basic block is bb2. In addition to LLVM instructions, the operator
lookup table also interprets some higher-level standard library calls. For instance, the C++’s vector
operations are mapped to abstracted array operations.

Given predefined lookup tables, AVChecker traverses instructions in LLVM IR and translates
them from LLVM IR to semantic IR while preserving control flows. We first translate the arguments
to corresponding SMT-compatible variables, which are either defined by earlier semantic IR instruc-
tions or defined by annotations in the variable lookup table (if the pattern of the argument matches
the left side of annotations, as mentioned in §3.4.1). Then, according to the operator lookup table,
the LLVM operation with original arguments is converted to the SMT-compatible operation with
translated arguments. Finally, a new variable is initialized as the left value in semantic IR. Note
that the AVChecker will abort and throw errors to notify AV developers to refine their annotations
if there is an undefined variable/operator or a mismatch on the data types of function arguments
with the function signatures. As shown in Figure 2, variables in the semantic IR are all replaced by
in-model expressions but program control flows do not change.

To sum up, semantic IR maintains the control flows and the code logic in LLVM IR but replaces
the program with an SMT-compatible format. During this process, a few code details which are
irrelevant with driving rules are dropped, including bit-width of data types, pointers, and exceptions
(because we do not annotate them). The semantic IR cannot handle complicated class type casting
and function pointers but we do not observe them in driving rule handling of Apollo and Autoware.
It can neither handle complex mathematical computations that exceed the limit of SMT’s first-order
logic but those are usually lower-level details of annotated functions so that they do not block the
translation. More discussions on the limitations of semantic IR are presented in §4.4.

Symbolic execution extracts action or transition constraints, which are part of the behavior
specification (§3.3), from the semantic IR. Using our proposed program slicing and pointer elimina-
tion in semantic analysis, we can significantly reduce the code size and avoid complicated memory
modeling, making AVChecker’s symbolic execution scalable on AV software. The symbolic execu-
tion engine used in this work is the same as a standard symbolic execution algorithm [23, 30]. It
processes instructions one-by-one, forks or merges when having branches, and maintains program
states throughout the program execution. Then, AVChecker traverses the execution paths from
program entries to the points of updating state variables or taking actions and produces path
constraints, which are conjunctions of branch conditions along the execution path. By definition, if
the inputs of the program satisfy the path constraint, the program execution will reach the specific
program point. Given a specific program point, the corresponding constraint is the union of path
constraints from all entries to the exit. Finally, we can fill the path constraints as transition or
action constraints in the behavior specification to make it complete. As shown in Figure 2, the path
constraint to the action stop_at_crosswalk is the action constraint in the final specification.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 15. Publication date: June 2021.



15:14 Qingzhao Zhang et al.

3.5 Violation identification

The violation identification aims to identify violations between the behavior specification and
the rule specifications. Violation is a specific traffic scene snapshot in which the behavior of AV
conflicts with the driving rule. We generate an SMT constraint representing the existence of the
violation and use an SMT solver to solve a solution that identifies the violation.

Definition 3.1 (State constraint). Given behavior specification (M, S, §, @) where §(s;,, s,) is the
constraint of transition from state s,, € S to s, € S, the state constraint for state s; € S is

Csi = (Vs es,i%j 6(si:57))-

Given the behavior specification, we first extract the implicit relationship between software
states and snapshots. We calculate a constraint of possible snapshots for each state in the behavior
specification, called state constraint. As shown in Definition 3.1, the state constraint is the comple-
ment of outgoing transition constraints, because snapshots triggering outgoing transitions always
make the current state unstable and are impossible to coexist with the current state. For instance,
in the sample behavior specification presented in Section 3.3.2, once the AV passes the crosswalk,
the state will shift from “finished=false” to “finished=true”. Hence the state constraint of the state
“finished=false” is “AV has not passed crosswalk”, which correctly captures the state’s semantics.

For one traffic snapshot, state constraint Cy;, s; € S is one necessary condition for the software
state to be s;. This is because if —Cy; is satisfied, at least one transition from s; takes effect so that
the current state cannot be s;.

Definition 3.2 (Violation constraint). Given the action space A, realistic constraint C,,, behavior
specification (M, S, 8, a), rule specification (M, a, y1, C,) and state constraints Cy;, s; € S, the violation
constraint Cy is: Cpy A Cr A V,e5(Csi A ((ma(si,a) A p=1) V (a(si,a) A p=0))).

Next, we reason the existence of violations as shown in Definition 3.2. First of all, a violation
must always satisfy the realistic constraint to be a valid snapshot, and the rule constraint to be
within the scope of rule specification. The violation may happen in any software state, but it must
satisfy the corresponding state constraint and trigger actions differently from the rule specification.
Concatenated all constraints together, we have a constraint of violations.

The violation constraint is one necessary condition for a snapshot to be a violation. Realistic
constraint Cp, and rule constraint C, by definition are both necessary conditions of being a violation.
Given the definition of violations, for one state s; € S, (—=a(s;,a) A= 1) V (a(s;,a) A g = 0) is one
necessary condition of there is one violation on s;. By combining the constraint for each software
state, the violation constraint is one necessary condition of having one violation on at least one
software state.

The final step is to solve one violation case or prove the absence of violations, which is a
satisfaction problem. We query SMT solver Z3 for finding a solution to the violation constraint. If
Z3 finds the violation constraint to be unsatisfiable, the rule violation does not exist between the
two specifications. Otherwise, Z3 will produce a solution that represents a violation case.

Correctness. The correctness is under the assumption that the rule specification and the behavior
specification correctly model driving rule logic and AV’s behavior respectively. Since the violation
constraint is one necessary condition for a snapshot to be a violation, all possible violations satisfy
the violation constraint. Assuming the SMT solver is correct and sound, if the violation constraint
is unsatisfiable, it ensures no possible violation exists between the specifications. However, the
produced violation case is not guaranteed to be a real violation so AVChecker deploys the validation
module to rule out false positives.
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(a) Visualized violation case. (b) Screenshot of simulator.
Fig. 3. Validation of the example rule in §3.1 on Apollo.

3.6 Validation

The validation module aims to examine found violations in the simulator, which simulates more
realistic details than abstracted models so that it can rule out false positives caused by model
abstractions. As discussed in §3.5, the violation constraint is only a necessary constraint of being a
violation. This is because the realism constraint in AV traffic model may not include all constraints
about the real-world driving. For instance, AV with a very high speed right after a stop sign is
possible according to the specification but is impossible in the real world because the AV will stop
first and the acceleration is limited. Meanwhile, inaccuracy of the semantic analysis may also cause
false positives. Fortunately, we can simulate the violation case to quickly rule out these violations
that are impossible to happen.

AVChecker automatically transforms the violation case produced by the SMT solver to a test case
for AV simulators. The test case generation contains two steps. First, AVChecker generates a map
for simulation according to the relative positions of static objects (e.g., crosswalks, stop signs, and
intersections). Second, AVChecker puts moving objects (e.g., AV, other vehicles, and pedestrians) on
the map and set their initial status. Then the developer can replay the case in the simulator and
observes whether the violation really occurs. The validation module also supports a fuzzing mode,
which uses the violation case as a seed to generate more simulation test cases to understand the
violation better. The details of generating test cases depends on the AV software and simulation
platform. For both Apollo and Autoware, we use HD maps to configure static objects and ROS
packets [10] to manage moving objects.

One such generated test case of the example (§3.1) is shown in Figure 3, which automatically
generates a straight road, a crosswalk, and a pedestrian in the simulator. The simulation confirms
the violation that Apollo does not stop when the pedestrian is still on the crosswalk. The violation is
because Apollo thinks the stop is unnecessary as long as the pedestrian is not very close and moving
very slowly, which is a bit aggressive. Though the Apollo’s behavior does reduce the probability of
collisions, pedestrians on the crosswalks can still be frightened by a full-speed AV.

4 EVALUATION

We evaluate our prototype on two popular open-source AV software platforms, Baidu Apollo 5.5 [3]
and Autoware 1.13 [6], by checking traffic rules defined in the DMV driving manual and intended
driving behaviors inferred from commit logs in their software repository. We first go through the
evaluation on Baidu Apollo, which has the most detailed driving rule handling to our best knowledge,
and then present the checking on Autoware in §4.7. We aim to answer the following questions:
1) How effective can AVChecker detect driving rule violations; 2) How long does AVChecker take
to check real-world rules on AV software; 3) How much savings of manual efforts can AVChecker
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achieve; 4) How general can our framework apply to different AV software platforms and different
driving rules. All experiments are executed on a server (Intel Xeon CPU E5-4620v2 2.60GHz, 128GB
RAM). Our experiments show that AVChecker detects 13 violations out of 32 test cases for Apollo
and 6 out of 8 test cases for Autoware. The semantic analysis for each software takes less than 25
minutes and the violation identification process finishes in 13 seconds for each rule. The simulation
finds no false positive in our test cases.

4.1 Implementation

We introduce the implementation effort on three modules. Semantic analysis is implemented
as an LLVM pass of 3,475 LOC C++. We leverage default LLVM analyses, including control flow
graph (CFG) and call graph, and SVF [56] for pointer analysis. We implement semantic IR and
symbolic execution from scratch. Violation identification (along with the AV traffic model) is
implemented by 2,286 LOC Python. We use SMT solver Z3’s interfaces including symbolic variables,
constraint solving, and quantifier elimination. We manually annotate in-code variables and write
rule specifications using interfaces of AV traffic model (§3.2.1). Validation is implemented in 814
LOC Python scripts. Each test case contains an HD map and ROS packets [10]. We use simulator
SimControl [3] and Carla [26] for Baidu Apollo [3] and Autoware [6], respectively.

4.2 Test cases

In this section, we introduce the driving rules for evaluation and how the test cases are generated.

DMV rules. We collected 45 DMV driving rules about various non-trivial scenarios, including
crosswalks, traffic lights, stop signs and intersections, described in English [5, 8, 9, 11, 12]. From
the driving rule dataset, we manually write 28 rule specifications as the test suite, 5 for crosswalks,
16 for intersections, 4 for traffic lights, and 3 for stop signs.

Some DMV rules have no related specifications because of several reasons. First, some rules
do not address issues of decision making. Only the rules with specific actions such as stop and
deceleration are considered in our study. Second, some decision-making process does not need to
validate because Apollo does not implement such features, for instance, the flashing traffic lights.
Third, some rules are about routing logic rather than motion planning, e.g., which lane should
the vehicle select. Unfortunately, routing is a complicated algorithm in AV software and our code
analysis does not handle it. We leave the coverage on routing as future work.

Commit logs. To demonstrate the benefits of AVChecker in AV development, we generate extra
test cases from Apollo’s bug fixing commits and evaluate whether our framework can detect these
bugs. We found 4 bug fixing commits within the scope of driving rule logic in total from Apollo’s
Github repository. For each commit, we execute the code analysis twice on the version of code
before and after the commit, respectively. Then, we use the two versions of the code to check the
same driving rule. If AVChecker produces a violation on code version before the commit but no
violation after the commit, the implementation bug is correctly captured.

4.3 AV traffic model

We evaluate our AV traffic model in terms of coverage on various traffic scenarios and ease of use.

First, the model can represent a wide range of common traffic objects and scenarios. We im-
plement 9 types of traffic objects in the AV traffic model: vehicle, pedestrian, bicycle, lane, road,
crosswalk, traffic light, stop sign, and intersection. These objects are mentioned by both traffic rule
implementation in AV software (i.e., Baidu Apollo and Autoware) and 28 traffic rule specifications
we collect. Besides, the AV traffic model is extensible to define other traffic objects using provided
APIs (§3.2.1). In our experiment, the whole AV traffic model defines one AV object and one object
for each traffic object type though the model by design can define more objects. This configuration
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Table 2. Selected APIs of AV traffic model.

API Description #0p  Depth
On(Point a, Line b) Point a on line b. 20 8
In(Point a, Area b) Point a inside area b. 15 7
In(Area a, Area b) Area a inside area b. 26 9
Cross(Line a, Area b) Line a cross area b. 28 8
Cross(Area a, Area b) Area a cross area b. 23 7
TrajectoryCross(Object a, Object b) Trajectories of two mobile objects cross. 72 11
Wait(Vehicle v, Area a) The vehicle is waiting for entering area. 11 6

can already support the rule-based validation on 32 test cases we collected because the collected
rules contain no interaction among multiple traffic objects in the same type. In the scenario of
multiple objects, these rules can be applied to each object independently so that the violation identi-
fication has the same result as the single-object scenarios. The final model has 92 base variables (i.e.,
symbolic variables) in total and the realistic constraint C,, has 342 SMT operators and an Abstract
Syntax Tree (AST) depth of 8. Thanks to the abstractions presented in §3.2.2, the AV traffic model
is lightweight enough to be easily handled by Z3 SMT solver.

Second, the AV traffic model’s APIs are easy to use. We list some frequently used APIs and the
complexity of the corresponding backend SMT representation in Table 2. Developers can write one
line of code calling one API to formally represent the corresponding meaning. If not using APIs,
developers must manually construct the SMT expression using dozens of operators to represent
the same meaning, which is a tedious and error-prone job. For instance, the most complicated API
in the table, TrajectoryCross, has 72 operators after encoded in SMT. If we construct the meaning of
TrajectoryCross using the lowest-level symbolic variables, at least 50 LOC Python code is required.
As a result, using these APIs significantly reduces manual effort as mentioned in §4.6.

4.4 Semantic analysis

In this section, we discuss the semantic analysis in terms of efficiency and accuracy.

The semantic analysis overall covers the code handling crosswalks, intersections, stop signs, and
traffic lights in Baidu Apollo. The generated behavior specification for Baidu Apollo contains 12
unique states, 27 transition constraints, and 6 action constraints. The most complicated constraint,
the action constraint of stopping at the crosswalk, contains 4,566 SMT operators and has an
AST with a depth of 18. AVChecker processes the compiled bit code which contains 307K LLVM
instructions (excluded external libraries), slices the original code to 1,969 instructions, and exploits
671 execution paths in total.

As for efficiency, program slicing can shrink the code size to around 0.6% since 1,969 out of 307K
instructions are identified as rule-related. Before code slicing, symbolic execution cannot complete
due to the path explosion. After removing irrelevant code in Baidu Apollo, the symbolic execution
can finish in 20 minutes and the whole semantic analysis takes less than 25 minutes.

The inaccuracy of semantic analysis mainly comes from pointer analysis and manual annotations.
In our experiment, the pointer analysis succeeds in resolving each pointer to one unique points-to
value for each execution path, which implies no ambiguity. Also, we manually examine the analysis
result and observe no failed cases on the code of Baidu Apollo and Autoware. However, the pointer
analysis is not promised to be perfect, which is a general limitation in related work [50]. Second,
the accurate semantic analysis relies on the quality of annotations. For each rule-related functions
or variables in the code, developers need to provide the corresponding in-model expressions whose
semantic meaning is the closest. The semantic extraction (§3.4.2) aborts when there are undefined
variables or unmatched data types, which also help to avoid careless mistakes.
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Table 3. Test cases of driving rule verification on Apollo 5.5.
1D Action Rule constraint in English Rule constraint in formal representation #op  Dep T/s Val
1 Stop at crosswalk A vehicle has stopped behind the crosswalk. wait(vehicle,cross) A Approach(ego,cross) 46 9 12.81 TP
2 Stop at crosswalk Pedestrians on your side of an oncoming In(ped,cross) A In(ped,road) A 66 9 1262 TP
crosswalk (example rule in §3.1). Approach(ego,cross)
. . A pedestrian has not finished crossing the In(ped,cross) A In(ped,road) A
3 Stop at intersection side of the road onto which you are turning. In(cross,inter) A Approach(ego,inter) A 88 i 1262 TP
4 No park Within 20 feet of a crosswalk. Cross(cross,road) A Dist(ego,cross) < 20 23 7 0.93 TP
5 No park AV blocks a crosswalk. Cross(ego,cross) 23 8 0.64 TP
6 No stop at crosswalk Unable to de.celerate for sa?ely stopping at Deceler.ate(cross.startis) > max_a A 57 9 12.87 N
stop line, no pedestrian close. Dist(ego,ped) > safe_dist
6" No stop at crosswalk Rule #6 before commit ae3082a3. The same as Rule #6 57 9 5.86 TP
. X ego.turn = right A signal.color = yellow A
7 .NO stop at Right turn on yellow; AV has passed stop Passed(ego,inter.start_s) A 158 13 3.01 N
intersection line; traffic is clear. . .
—TrajectoryCross(ego,vehicle)
" No stop at . .
7 . . Rule #7 before commit Icle7e98. The same as Rule #7 158 13 4.01 TP
intersection
8 Stop at intersection Approaching an mterse(}tmn without signs Approach(ego,inter) A signal.color = 17 7 3.02 N
or traffic lights. unknown
8* Stop at intersection Rule #8 before commit e896fa9b. The same as Rule #8 19 7 2.85 TP
9 No park Within 30 feet of a signal. Cross(signal,road) A Dist(ego,signal) < 30 20 7 0.33 TP
10 Stop at traffic light Approaching red signal. Approach(ego,signal) A signal.color = red 10 7 0.41 TP
11 No park Within 30 feet of a stop sign. Cross(stop,road) A Dist(ego,stop) < 30 11 6 0.27 TP
Another vehicle stops at a stop sign vehicle.turn # left A Wait(vehicle,stop) A
12 Stop at stop sign intersection turning right or going straight; ego.turn = left A Wait(ego,stop) A 147 13 332 TP
meanwhile AV is turning left, conflict exists. TrajectoryCross(ego,vehicle)
. Another vehicle comes to a stop at an stop Walt(egf) ,stop)./\ Walt(veh]c.le,stop) A
13 Stop at stop sign P - . . . vehicle.arrival < ego.arrival A 128 13 3.45 N
sign intersection earlier, conflict exists. . .
TrajectoryCross(ego,vehicle)
13* Stop at stop sign Rule #13 before commit cc8009a2. The same as Rule #13 128 13 3.20 TP
No stop at Left turn; traffic light is green; no oncoming ego.turn = left A signal.color = green A = .
14 . . . . 123 14 2.94 N
intersection traffic. TrajectoryCross(ego,vehicle) ...
15 Stop at intersection Left turn; traffic light is green; oncoming ego.turn = left A slgnal.color.: green A 190 15 283 N
traffic. TrajectoryCross(ego,vehicle) ...
16 Stop at intersection Left turn on red from a one-way street onto ego.turn = left A slgna.l.color =red A 13 7 .00 N
another one-way street; have not stopped. Approach(ego,signal) ...
Left turn on red from a one-way street onto ego.turn = left A signal.color = red A
17 Stop at intersection another one-way street; after a full stop; Wait(ego,signal) A 126 13 2.89 N
traffic approaching from the right exists. TrajectoryCross(ego,vehicle) ...
18 Stop at intersection Left turn on red from a two-way street onto ego.turn = left A slgna}.color =red A 13 7 2,69 N
another one-way street; have not stopped. Approach(ego,signal) ...
Left turn on red from a two-way street onto ego.turn = left A signal.color = red A
19 Stop at intersection another one-way street; after a full stop; Wait(ego,signal) A 151 13 2.90 N
traffic approaching from the right exists. TrajectoryCross(ego,vehicle) ...
2 Stop at intersection Right turn on red; have not done the full ego.turn = right A slgna!Acolor =red A 13 7 345 N
stop. Approach(ego,signal)
. . i . ego.turn = right A signal.color = red A
21 Stop at intersection Right turn on red; after a full stop: conflicts Wait(ego,signal) A 148 13 3.56 N
with oncoming traffic exist. . .
TrajectoryCross(ego,vehicle)
Approaching intersection; yield the . Lo
22 Stop at intersection right-of-way to traffic that is in the Approach.(ego,mter) A In(vehlgle,xnter) A 129 15 2,51 N
; . TrajectoryCross(ego,vehicle)
intersection.
Approaching intersection; traffic is backed . 1
23 Stop at intersection up on the other side and you can not get App rDaCh(Ego’lmer>. A In(vehlc.le,mter) A 64 9 2.44 N
Cross(ego.trajectory,vehicle)
through.
. . ‘Waiting at intersection; traffic light is green; | Wait(vehicle,inter) A signal.color = green A
% Stop at intersection should stop for crosswalk. In(ped,cross) A In(cross,inter) 88 i 3.09 N
25 No park Within an intersection. Cross(vehicle,inter) 20 7 0.56 N
. . A vehicle on the right arrives at the same Wait(ego,inter) A Wait(vehicle,inter) A
26 Stop at intersection time, yield to that vehicle. vehicle.arrival<ego.arrival A vehicle.turn=R 127 13 3.09 N
- . . Approach(ego,signal) A signal.color =
27 Stop at traffic light Yellow signal; can safely decelerate to stop. yellow A Decelerate(cross.start_s) < max_a 19 7 2.16 N
. X . . . Approach(ego,signal) A
28 No Sto]? at traffic Green signal; no conflict .w1th other vehicles ~TrajectoryCross(ego,vehicle) A 220 15 301 N
light or pedestrians. .
—TrajectoryCross(ego,ped)
The first row: #op — the count of SMT operators; Dep — depth of SMT expressions’ AST; T/s — Time in seconds; Val — validation result.
4.5 Violation identification

We have 32 test cases for Baidu Apollo including 28 driving rules and 4 extra test cases from commit
logs (Table 3). We present the number of SMT operators and the depth of SMT expression’s AST to
indicate the complexity of rule constraints. For each rule, we also show the consumed time of the
violation identification process and the validation result, which is either true positive (TP), false
positive (FP), or negative (N). 13 validated violations are produced, which reveal potential safety
risks caused by ignorance of corner cases, improper checks, or implementation bugs (details in
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§5). The other 19 test cases are proved to be violation-free in the specification level. Violations in 4
rules extracted from Baidu Apollo’s git commits are correctly detected, which proves the capability
of AVChecker in capturing implementation bugs. In this section, we evaluate the efficiency and
accuracy of violation identification.

As for efficiency, violations can be identified in 13 seconds. The time cost is closely related to the
complexity of constraints and is much smaller than state-of-the-art simulation-based AV testing
methods. For instance, AV-fuzzer [41], a fuzzer generating simulation cases that violate safety rules,
discovers 13 violations in 195 hours.

We evaluate the accuracy using the validation result. All violations can be reproduced in the
simulator, implying no false positives in our detected violations. Under the assumption that all speci-
fications are sound and complete, the violation identification process will not miss any specification-
level violations, as analyzed in §3.5. Compared with simulation-based methods (e.g., AV-fuzzer [41]),
AVChecker theoretically has a comparable false positive rate because AVChecker also uses simulation
for the final validation. In terms of false negatives, AVChecker has significant advantages since
AVChecker is free of false negatives under the assumption of sound models and specifications but
the simulation-based fuzzing approach can never have the assurance.

4.6 Manual efforts

Manual effort mainly comes from two aspects: annotating the source code, and writing rule
specifications. Note that our AV traffic model isolates the code side and rule side, thus analyzing
another AV software requires new annotations but there is no need to update rule specifications.
On the other hand, supporting new driving rules only requires writing a new rule specification.

Annotations. To extract the behavior specification, developers need to provide three types of
annotations as mentioned in §3.4.1. In our implementation, we manually do 5 action annotations,
55 variable annotations, and 9 API annotations written in 170 LOC Python for Baidu Apollo, which
takes about 4 man-hours assuming the developer has knowledge of the codebase. Over 90% of
the variable annotations are simple mappings from one in-code variable to one existing in-model
variable. Existing SMT-based system verification work requires a comparable amount of annotation
effort. For example, Hyperkernel [45] requires 53 annotations written in 250 LOC Python to map
variables in source code to states in specifications.

Rule specifications. Given high-level APIs, users can define complex specifications with a
couple of lines of code. The number of operators (including APIs of AV traffic model) used in each
specification (Table 3) is only about 7% of the SMT operator count of SMT-encoded rule constraints,
demonstrating a 15x savings of manual effort. In terms of lines of code, rule specifications can be
written in less than 10 lines but 60 lines are needed on average without AV traffic model’s APIs.

4.7 Generality to AV software

AVChecker is a general framework for driving rule compliance checking on AV software but we
select Apollo for demonstration because Apollo is one of the best implemented open-source AV
software. In this section, we carry out a case study of validating driving rules in Autoware-1.13 [6]
to show the deployability of AVChecker on various platforms.

Autoware uses state machines to manage the vehicle state, which perfectly satisfies the formula-
tion in §3.3.2. Our extracted behavior specification contains the 21 states, 25 transitions as well
as 8 action constraints, and requires 38 manual annotations. Rule specifications are not changed.
However, Autoware does not have a well-defined driving rule implementation about intersections.
As a result, from Table 3, we evaluate eight rules in total for Autoware: three crosswalk rules (i.e.,
rules 1,2,6), three traffic light rules (i.e., rules 10,27,28) and two parking rules (i.e., rules 9,11,25).
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AVChecker finishes the violation identification process for each rule in 10 seconds. As for cross-
walk rules, AVChecker finds a violation of rule 1 and proves that rules 2, 6 have no violation. Autoware
does not implement rule 1 either and we validated the violation using simulator Carla [26]. As
for traffic light rules, AVChecker finds violations on rules 27 and 28. Autoware only implemented
three signal colors: red, green, and unknown without yellow signals, which caused the violation
of rule 27. Also, Autoware does not consider the traffic inside the intersection when dealing with
traffic lights, which violates rule 28. AVChecker produces violations on all three parking rules since
Autoware does not explicitly enforce any no-parking areas. As a whole, Autoware’s implementation
of driving rule handling does not cover a lot of corner cases, which results in violations.

In conclusion, AVChecker can also be applied on Autoware and by design all AV software that
satisfies the state machine formulation in §3.3.2.

5 FINDINGS
5.1 Violation findings

The 32 test cases produce 13 validated violations in Apollo as listed in Table 3. Particularly, violations
of rules 1,2,3 causes risk of collision with pedestrians while violations of rule 4,5,9,11 may block
normal traffic. Through code reading on Apollo we summary three types of causes of violations:
not implemented, over restricted and implementation bugs.

Violations of rules 1, 4, 5, 9, 11, 12 are caused by not implemented features. For 4 parking rules,
Apollo defines "keep clear" areas to ban illegal parking actions but fails to restrict all no-parking
landmarks, which may block normal traffic. Especially, rules 1, 12 reveal the ignorance of special
cases in AV software and we do detailed case studies in §5.2.

Violations of rules 2, 3, 6%, 7%, 10 are because the code applies unsafe constraints on the action
taking. For instance, rule 10 is caused by an extra check on the deceleration rate. Apollo may
skip stop actions if stop distance is not sufficient for deceleration. However, skipping stop actions
sometimes is not safe and there exist accidents of AV caused by the failure of deceleration [22].

Violations of rules 8”, 13* are caused by implementation bugs and these test cases are indeed con-
structed from Apollo’s bug-fixing commit logs. In these cases, some predicates are incorrect which
causes abnormal decision making. AVChecker can detect such implementation bugs effectively.

5.2 Case studies

Besides rule 2 (§3.1), we study rule 1 and rule 12 in Table 3 by analyzing the safety consequences.

Crosswalk rule #1. In Apollo, the code about crosswalk handling considers the distance of
pedestrians away from the AV, the position and trajectory of the pedestrian, etc. However, Apollo
does not consider the behavior of other vehicles in the crosswalk scenario, which differs from what
traffic rules state. This driving rule is designed for minimizing the safety risk caused by occlusion,
which is also a problem for AV sensors. Figure 4 in Appendix shows the simulation of the generated
violation scene with a sprinting pedestrian on the crosswalk. The simulation results in AV’s hitting
the pedestrian in the end as he was obstructed by the adjacent vehicle and AV’s perception did not
detect him until very close to him.

Stop sign rule #12. Apollo’s implementats of stop sign rules in a state machine whose states
include pre-stop, stop, creep, and cruise. State stop takes the “stop st stop sign” action and state creep
cancels the action. When turning left (i.e., transiting from stop to creep), the driving rule requires
the AV to yield vehicles that turning right or going straight but Apollo does not consider the turning
directions. This rule has no severe safety consequence but affects the efficiency of traffic. Human
drivers have a common sense that vehicles that are going straight have higher priority than those
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who are turning left. If AV does not follow the same principle but shares the same road with human
drivers, unnecessary conflicts are likely to occur.

6 LIMITATIONS

We discuss the limitations of AVChecker in two aspects.

Scope of violation identification. AVChecker can find violations against driving rules in the
code semantics of AV software’s motion planning module. AVChecker checks whether the developers
are adopting the right driving rules but cannot reveal of low-level bugs such as null pointers and
buffer overflow. This is because the general driving rules, written in natural language and designed
for human, only contains a high-level description of the driving scenarios without considering
low-level data processing in software. AV developers can deploy AVChecker along with conventional
software testing techniques such as unit tests and fuzzing so that both low-level bugs and high-level
logic are covered.

Also, AVChecker validates driving rule implementation in the module of motion planning specifi-
cally. AVChecker does not cover other AV software modules such as perception through sensors
and control over cyber-physical components. We require the driving rule specifications to consider
possible failures from other modules (e.g., rule #1 in Table 3 considers perception failures because
of occlusion). We leave the model-based correctness checking on other modules as future work.

Modeling capability. The expressing ability of AV traffic model has restrictions since SMT
theorem solving based on first-order logic by design cannot accurately represent complicated non-
linear algorithms. To alleviate the restriction, AVChecker relies on manual annotations to interpret
the semantic meaning of complicated computation and allows developers to extend the model
by adding APIs or properties of traffic objects. For example, though the software code computes
whether two trajectories cross by iterating each trajectory point in one function, the AV developer
can annotate the function that it is equal to “line cross line” geometric relation in the model, which
captures the code logic but ignores lower-level details. Also, the model cannot support an infinite
number of traffic objects due to the limitation of SMT’s first-order logic.

7 RELATED WORK

Testing and validation of autonomous driving. This paper focuses on safety validation of
autonomous vehicles. Autonomous driving is mission critical so it is important to validate an AV
system is safe and secure before its real-world deployment [31, 32, 36, 37]. Simulation is the main
approach to testing an AV system. Autonomous driving simulators [26, 52] enable efficient AV
testing in realistic driving scenes and simulation-based safety validation [15, 17, 41, 43, 47, 62]
tries to maximize the efficiency of testing. Besides, software testing [29, 57, 61] is applied on AV
software, which efficiently generates critical test cases to search for safety vulnerabilities. Formal
models [14, 16, 42, 54] are proposed to model the behavior of drivers or safety-related driving
situations. However, existing formal models cannot check code implementation and are limited in
checking specific driving rules. More related AV testing approaches are summarized in §2.2 and
there is no work finding violations of scenario-dependent driving rules as AVChecker does.
SMT-based testing or verification. Satisfiability Modulo Theories (SMT), as an extended form
of Boolean satisfiability (SAT), represents a constraint solving problem for logical formulas with
respect to background theories expressed in classical first-order logic. SMT provides encoding of
formal variables at a higher level expressiveness and becomes an important backend tool for formal
verification or test case generation techniques [19, 20, 59]. SMT-based verification is applied for
detecting vulnerabilities or bugs on various domains including operating system [45, 55], GPU
program [40], side-channel defenses [27], neural networks [34] and so on. Generally, SMT-based
verification first encodes the domain to SMT semantic and then applies SMT reasoning to prove
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theorems. On the other hand, SMT-based test case generation leverages SMT solving to identify
valuable test cases in a large search space [24, 33, 35, 46]. AVChecker is also in the category of test
case generation which uses the generated driving scenarios to test AV software. But different from
existing SMT-based test case generation for programs [24, 46], the driving scenario is much more
complicated since it contains the spatio-temporal information in the real world. AVChecker designs
sound modeling of traffic snapshots to enable the SMT-based test case generation for AV testing.

8 CONCLUSION

We propose a framework AVChecker for identifying violations of scenario-dependent driving rules
in AV software. In the core of the framework, we leverage a domain-specific abstraction to bridge
the semantic gap between software code and safety-related specifications. Also, automatic processes
minimize the required human effort and make the framework deployable in the real world. Our
evaluation on Apollo and Autoware reveal potential safety risks effectively.
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Fig. 4. Snapshot of simulation to validate detected violation with Crosswalk rule #1 Stop at a crosswalk if a
vehicle has stopped behind the crosswalk in Baidu Apollo

A VIOLATION SIMULATION

Figure 4 is captured from the simulation of an AV running Baidu Apollo in the traffic scene generated
by AVChecker with a sprinting pedestrian on the crosswalk. This rule violation in Baidu Apollo
leads to AV’s hitting a pedestrian on a crosswalk walking across the street that has been obstructed
by a stopped bus until approaching very close to him.
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